Design and Analysis of Information-Theoretically Secure Authentication Codes with Non-Uniformly Random Keys
نویسنده
چکیده
The authentication code (A-code) is the one of the most fundamental cryptographic protocols in information-theoretic cryptography, and it provides information-theoretic integrity or authenticity, i.e., preventing information from being altered or substituted by the adversary having unbounded computational powers. In addition, it has a wide range of applications such as multiparty computations and quantum key distribution protocols. The traditional A-code theory states that a good A-code is characterized as an A-code which satisfies equality of a lower bound on size of secret-keys, i.e., an A-code satisfying |K| = ε−2, where |K| is cardinality of the set of secret-keys and ε is the success probability of attacks of the adversary. However, good A-codes imply that secret-keys must be uniformly distributed. Therefore, if a non-uniformly random key is given, we cannot realize a good A-code by using it as a secret-key. Then, a natural question about this is: what is a good A-code having non-uniformly random keys? And, how can we design such a good A-code having non-uniformly random keys? To answer the questions, in this paper, we perform analysis of A-codes having non-uniformly random keys, and show the principle that guides the design for such good A-codes. Specifically, the contribution of this paper is as follows. We first derive a new lower bound on entropy of secret-keys, and it is described in terms of Rényi entropy. Next, we define that a good A-code having non-uniformly random keys is the one satisfying equality of the bound, and it is characterized by the min-entropy (a special case of Rényi entropy). Furthermore, we introduce the classification methodology for A-codes which are realizable from a biased key-source. This classification is performed by using a mathematical tool, i.e., a group action on the set of authentication matrices. By this analysis, we can understand what kind of A-codes is actually constructable. Finally, we design how to construct good A-codes having 1-bit messages from von Neumann sources. We also show that our construction methodology is superior to the one by applying von Neumann extractors and the traditional optimal A-code constructions. Although the case of 1-bit messages may be restricted, however, this case is simple and we believe that a general case will develop from this simple case.
منابع مشابه
Unconditionally Secure Signatures
Digital signatures are one of the most important cryptographic primitives. In this work we construct an information-theoretically secure signature scheme which, unlike prior schemes, enjoys a number of advantageous properties such as short signature length and high generation efficiency, to name two. In particular, we extend symmetric-key message authentication codes (MACs) based on universal h...
متن کاملHMAC-Based Authentication Protocol: Attacks and Improvements
As a response to a growing interest in RFID systems such as Internet of Things technology along with satisfying the security of these networks, proposing secure authentication protocols are indispensable part of the system design. Hence, authentication protocols to increase security and privacy in RFID applications have gained much attention in the literature. In this study, security and privac...
متن کاملInformation Theoretically Secure Encryption with Almost Free Authentication
In cryptology, secure channels enable the exchange of messages in a confidential and authenticated manner. The literature of cryptology is rich with proposals and analysis that address the secure communication over public (insecure) channels. In this work, we propose an information theoretically secure direction for the construction of secure channels. First, we propose a method of achieving un...
متن کاملKey Agreement over Wiretap Models with Non-Causal Side Information
The security of information is an indispensable element of a communication system when transmitted signals are vulnerable to eavesdropping. This issue is a challenging problem in a wireless network as propagated signals can be easily captured by unauthorized receivers, and so achieving a perfectly secure communication is a desire in such a wiretap channel. On the other hand, cryptographic algor...
متن کاملA Distributed Authentication Model for an E-Health Network Using Blockchain
Introduction: One of the most important and challenging areas under the influence of information technology is the field of health. This pervasive influence has led to the development of electronic health (e-health) networks with a variety of services of different qualities. The issue of security management, maintaining confidentiality and data integrity, and exchanging it in a secure environme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015